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Abstract. We extend our study of phase transitions in the generalization behaviour of multilayer
perceptrons with non-overlapping receptive fields to the problem of theinfluence of noise
concerning, for example, the input units and/or the couplings between the input units and the
hidden units of the second layer (= ‘input noise’) or the final output unit (= ‘output noise’).
Without output noise, the output itself is given by a general, permutation-invariant Boolean
function of the outputs of the hidden units. As a result we find that the phase transitions which
we found in the deterministic case, mostlypersist in the presence of noise. The influence of
the noise on the position of the phase transition, as well as on the behaviour in other regimes
of the loading parameterα, can often be described by a simple rescaling ofα depending on
the strength and type of the noise. We then consider the problem of the optimal noise level
for Gibbsian and Bayesian learning, looking at replica symmetry breaking as well. Finally, we
consider the question of why learning with errors is useful at all.

1. Introduction and overview

1.1. Introduction and basic definitions

Recently [1], one of us treated the problem of phase transitions in the generalization
behaviour of two-layer neural networks with non-overlapping receptive fields. The
architecture of the systems considered is shown in figure 1. It corresponds to a tree of
totally N input units, which are grouped intoK vectorsξ1, . . . , ξK of M := N/K binary
componentsξk,m = ±1, with k = 1, . . . , K andm = 1, . . . ,M.

Each one of these vectorsξk determines the binary outputσk of a so-called ‘hidden
unit’ according to the perceptron-rule

σk = sgn

(
1√
M
wk · ξk

)
≡ sgn

(
1√
M

M∑
m=1

wk,m · ξk,m
)

(1)

where the so-called coupling vectorswk haveM arbitrary real componentswk,m, which are
only constrained by the normalizationw2

k = M.
The final outputσ (= ‘classification’, ‘answer’) of the machine for a given input (=

‘question’) results from a fixed Boolean function

σ = B(σ1, . . . , σk) ≡ B({σk}) (2)

∗ Based on the PhD thesis of B Schottky, Regensburg 1996.
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Figure 1. The architecture of the class of networks is considered. There areN binary input
units separated intoK different groups leading each to a ‘hidden unit’. The binary outputs of
the ‘hidden units’ are fed into a final Boolean output function. Only the weightsw from the
inputs to the hidden units can be modified by learning processes. Two kinds of noise will be
considered below: ‘input noise’ and ‘output noise’.

of the outputsσk of the hidden units. This Boolean function is arbitrary apart from the
postulate that it should be invariant against a permutation of the arguments.

Now the task of this classification machine is to learn a certain ‘rule’ bymodification
of the coupling vectorsthrough learning the correct classification of a set of input examples
ξµ = (ξ

µ

1 , . . . , ξ
µ

K), with µ = 1, . . . , p. Here it is assumed that the so-called loading
parameterα := p/N is finite, while the thermodynamic limitN →∞ is taken.

In the following it is also assumed that the ‘rule’, by which the correct answers follow
from the questions, is implemented by a ‘teacher perceptron’ of the same architecture as
given above, with fixed ‘teacher couplings’wt . In particular we assume that the Boolean
function of the student machine is the same as that of the teacher. However, the noise levels
can be different, unless otherwise stated (see below).

We consider thegeneralization abilityg(α), see [2, 3], of the system after a training
process withp = α · N examples;g(α) is defined as the probability that after the training
an additional random question is answered correctly, i.e. in the same way as the teacher
would answer in the absence of noise. It should be stressed that after the training we switch
off any noise, both for the teacher and student machine. In contrast, during the training,
noise of various kinds will corrupt both the student and teacher behaviour (see below).

Of courseg(α) generally does not only depend onα, but also on the architectures
considered, i.e. on the Boolean functionB({σk}), and noise. Only in the limitα → ∞,
as already shown in [1], in the absence of noise does the architecture not matter, and one
obtains forα→∞ asymptotically the universal result

g(α)→ 1− 0.625

α
(3)

for the so-called Gibbsian learning (see below), where a student is drawn randomly from
an ensemble which consists in the deterministic case just of those students classifying the
training set correctly.
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This asymptotic result is independent of the choice of the Boolean function and the
numberK of hidden units. Although, as already mentioned, our Boolean functions are quite
general, apart from the constraint of permutation invariance, and although the behaviour
depends essentially only on a small set of characteristic numbers (see below), we mention
for the following that the most important machines considered are:
• the committee machine: this machine classifies by a majority vote of theK := 2n+1

hidden units, i.e. with

σ = sgn

( K∑
k=1

σk

)
(4)

• whereas theparity machineis defined for generalK > 2 by

σ = sgn
K∏
k=1

σk (5)

• and finally the AND-machine by

σ = sgn

( K∑
k=1

σk −K + 1

)
(6)

i.e. a positive classification is only given, if all hidden units agree.
The main result of this paper concerns the possible existence of phase transitions in the

generalization behaviour as a function ofα. For example for theparity machine, in contrast
to thecommittee, generalization only starts ifα is larger than a critical value, [4–6] (‘Aha
effect’). In the preceding paper, [1], this was discussed for the deterministic case, whereas
in the present second part we discuss the influence of noise. Generally, we find that the
phase transitions mostly persist, although with changed critical values, and we also find
certain scaling laws combining the critical loading parameterα and the ‘noise strength’.
Furthermore, the performance of the system is found to be optimal, when the noise of the
‘student machine’ adapts to that of the teacher in a certain way.

1.2. Overview

As there are a lot of categories considered in this paper, it is easy to lose track. So we give
a brief overview for better orientation. The categories considered are as follows.
• Two types of noise,input andoutput noise, see sections 2.5 and 2.6 below.
• We consider: (i) the case where noise levels of the teacher and student are assumed

to bethe same(section 3); case (ii) where the student noise level can bechosen to optimize
the learning behaviour (section 4).
• Although most results are discussed for general values of the reduced sizeα := p/N of

the training set, the two limitsα→ 0 (more precise would be: ‘α small’, see section 3.2.1)
andα→∞ are of special interest.
• In view of the noise strength, particular emphasis is put on the two limits ofsmall

and large noise levels, respectively.
• Our main results are for general two-layer perceptrons withK ‘hidden units’, where

K > 1; however, emphasis is sometimes put on the caseK = 1, i.e. the single-layer
perceptron.
• There are different learning rules (section 2.2), and forK > 1 one has to distinguish

the different Boolean output functions (section 2.3).
• Our main results are obtained with thereplica-symmetricapproach (see below), but

we also discuss some results obtained withbroken replica symmetry(see section 4).
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Since in principle all these categories can be arbitrarily combined there is a very large
number of combinations, but not all of them are considered in this paper. We also mention
that some considerations areonly made for the simple perceptron (K = 1).
The paper is now organized as follows.
• Section 2 outlines the theoretical framework used in this paper, describes thelearning

algorithms considered and introduces the twotypes of noisetreated in this paper.
•Section 3 deals with case (i) mentioned above, i.e. there it is assumed that thenoise

level for the student is chosen to bethe sameas that of the teacher (which is not a bad
choice). Both types of noise are considered, with special emphasis on the limiting cases
α→ 0 andα→∞ of the loading parameter.
• In section 4 we investigate the impact of avarying student noise level at fixed teacher

noise, i.e. case (ii), aiming at the optimal choice. This is only done for the case of output
noise. Furthermore, here we concentrate mainly on the single-layer perceptron, taking
‘replica symmetry breaking’ (RSB) into account. The multilayer case is only treated for the
limiting cases of large and small training sets.
• Section 5 deals with the question, why a finite student noise level (which means that

some of the training patterns are not learned correctly) can be useful at all.
• Finally, section 6 presents our conclusions.

2. Basic theory

The answering behaviour of a student and teacher network for given weights is defined by
the two functions

φs/t (σ
µ|ws/t , ξµ) (7)

determining the probability of getting the final answerσµ to a questionξµ if the weights
w are given. The sub-/superscripts ‘s’ and ‘t ’ stand for student and teacher, respectively.
Soφ encodes both the underlying architecture and the noise process corrupting the answer.

2.1. The version space and free energy

From φt one derives the probabilityPt of getting answers{σµ} for patterns{ξµ}, with
µ = 1, . . . , p, by the teacher rule:

Pt(σ̃
p) =

∫
dwt Pw(w

t ) · p(σ̃ p|wt )

=
∫

dwt Pw(w
t )

p∏
µ=1

φt(σ
µ|wt , ξµ) (8)

where the so-calledprior Pw takes care of the normalization constraints. Hereafter we use
σ̃ p as the notion for the set{σµ} of answers, withµ = 1, . . . , p.

Using the Bayes theorem, the probability that a specific weight vectorws is the correct
one given the training patterns and the answers by the teacher, is determined throughφs by

p(ws |σ̃ p) = Pw(w
s)p(σ̃ p|ws)∫

dws Pw(ws)p(σ̃ p|ws)
(9)

with

p(σ̃ p|ws) =
p∏
µ=1

φs(σ
µ|ws , ξµ). (10)
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This defines thedegree of membershipof a specific coupling vectorws to the so-called
version space. The version space contains all student coupling vectors with a weight
proportional to the probability that these couplings agree with those of the actual teacher.
So one defines the corresponding partition function

Z(σ̃ p) =
∫

dws Pw(w
s)

p∏
µ=1

8s(w
s |σµ, ξµ) (11)

where

8s(w
s |σ, ξ) = cEφs(σ |ws , ξ) (12)

with cE being a positive free constant, which takes into account the fact that the degree of
membership does not have to be normalized.

In our case we restrict the possible functionsφs/t of the student resp. the teacher to
depend only on the correspondinglocal field valueshs/tk of the hidden nodes,

h
s/t

k := 1√
M
w
s/t

k · ξk (13)

so

φs/t (σ |ws/t , ξ) ≡ φs/t (σ |{hs/tk }). (14)

We can now perform the Gardner analysis, [7], by calculating

F : = 1

N
〈〈lnZ〉wt 〉{ξµ}µ=1...p

= 1

N
Tr
{σ̃ p}
〈Pt(σ̃ p) lnZ(σ̃ p)〉{ξµ}µ=1...p (15)

which we will call ‘free energy’ although this is physically not precise.
To describe the structure of the version space in the thermodynamic limitN →∞ we

introduce the order parameters

qk := 1

M
w1
k ·w2

k (16)

rk := 1

M
wt
k ·ws

k. (17)

So qk is the overlap between thekth subperceptron of two students chosen randomly from
the version space, andrk is the corresponding overlap of a random student vector with the
teacher couplings. Nevertheless, sinceB is restricted to be permutation symmetric, these
quantities cannot depend on the node numberk, and thus it is sufficient to use

q = qk r = rk (18)

as permutation-symmetric order parameters. In the replica-symmetric approximation,
straightforward calculations, see [8], lead to the final result

F = extr(q,r)

{
K−1

K∑
k=1

[
1

2
ln(1− q)+ 1

2

q − r2

1− q
]
− αW(q, r)

}
(19)

with the so-calledenergy term

W(q, r) =
∫ K∏

k=1

Dtk
∑
σ=±1

Ft(σ, {q, r, tk}) · lnFs(σ, {q, tk}) (20)



8546 B Schottky and U Krey

and thearchitecture specificationfor the teacher machine

Ft(σ, {q, r, tk}) =
∫ K∏

k=1

Dskφt

σ,
sk

√
1− r

2

q
− tk r√

q


 (21)

and for the student machine

Fs(σ, {q, tk}) =
∫ K∏

k=1

Dskφs
(
σ,
{
sk
√

1− q − tk√q
})
. (22)

Here Dx = (2π)−1/2 dx exp(−x2/2) is the Gauss measure, and the values of the order
parametersq, r are fixed by the saddle-point conditions

∂F
∂q
= ∂F
∂r
= 0. (23)

These are very general formulae which allow us to calculate the order parameters for
classification machines with tree architecture. Nevertheless, fornon-permutation-symmetric
Boolean functionsB one would have to distinguish between theqk, rk for different nodes.

2.2. Gibbs and Bayes algorithms; Gardner analysis

As training algorithms we discuss: (i) the Gibbs algorithm and (ii) the Bayes algorithm.
They are distinguished by the way the version space is utilized. For the Gibbs algorithm,
a ‘typical student machine’ is drawn at random out of the version space according to the
weight factor (9), and then an average is performed as usual. In contrast, for the Bayes
algorithm one takes into accountall members of the version space and gives that answer,
which corresponds to their weighted majority vote. In this way, thea posterior error
probability is minimized. Therefore, the answers given by this so-called Bayes procedure
usually cannot be obtained from only one machine of the kind considered.

2.3. Notation to encode the Boolean function

For a specific Boolean functionB (with a given numberK of hidden units) we define the
following expression:

1σ({σl}) =
{

1 B({σl}) = σ
0 constant.

(24)

Thus,1σ is 1 just for those internal representations which are mapped to ‘σ ’ by the Boolean
function B. We recall that only learnable problems are considered, so the same Boolean
function specifies the architecture for the teacher and student networks, and thus we need
no superscript to distinguish between them.

We also need a short code to denote a special architecure. We use the same convention
as already introduced in [1]: a Boolean function is characterized by its number of nodes
K and a special ‘mcode’q with q = ∑K−1

ν=0 nν2
ν . Herenν = 0 or = 1, respectively, if a

positive vote of exactlyν hidden units leads to a negative resp. positive final outputσ of
the Boolean function. (By convention,ν = K shall always imply a positive output.) The
name is then combined to ‘KK mcodeq ’, so for example ‘K4mcode2’ is a network with
four hidden units and positive output if exactly four or one hidden unit(s) have positive
vote.
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2.4. Error probability

The order parameters describe rather well the learning success (or failure) and we will often
present just these values. Nevertheless the quantity, which is so to say of final interest, is the
generalization ability. In the presence of noise, there exist of course different possibilities
to define this quantity; our choice is, as stated above, to assume thatafter training the noise
is switched-off completely, both for the teacher and student networks. Moreover, we refer
rather to the generalizationerror ε(α) := 1− g(α) measuring the probability that student
and teacherdisagreeon a new question.

For a given architecture this generalization error is determined uniquely by the values
of the order parametersq(α) and r(α), no matter which noise processes have influenced
the learning.

For the Gibbs algorithmε only depends on the typical student–teacher overlapr and is
given by (see also equation (21) in [1]):

ε(r) =
(

1

2

)K ∑
σ=±1

[
Tr
{σ t

k}
Tr
{σ s

k }
1σ({σ tk })1−σ ({σ sk })

∏
k

(
1− 1

π
arccos(σ tkσ

s
k r)

)]
. (25)

For the Bayes algorithm we obtain the generalization error by

εBayes=
∫ K∏

k=1

Dtk min

[
Tr
{σk}
11({σk})

∏
k

H(σkγ tk), Tr
{σk}
1−1({σk})

∏
k

H(σkγ tk)

]
(26)

where the ‘min’ means that the error probability corresponds to the smaller fraction of the
version space, which belongs to the minority votes. Note that in (26) the valuesq(α) and
r(α) of both order parameters are important.

For the simple perceptron, and for the parity machine in general, there is a close
relationship between (25) and (26); we will return to this point later.

2.5. Output noise

We have investigated the influence of two types of noise. The first one, called ‘output
noise’, flips the final output with the probability

pf = e−β

1+ e−β
. (27)

This corresponds to

φ(σ, {hk}) = exp(−β · δ[−σ, B({sgn(hk)})]
1+ exp(−β) (28)

as the probability of obtaining the outputσ for given fields{hk} at the hidden units. In
equation (28), we have writtenδ[i, k] for the Kronecker symbol (= 1, if i = k, = 0 for
i 6= k), andβ−1 is the parameter characterizing the noise strength.

2.6. Input noise

The second type of noise, called ‘input noise’, causes a noise perturbation of the local
fields at the hidden units,hk → hk + η, whereη is a random variable with the Gaussian
distributionρ(η) = (2πγ )−1/2 exp(−η2/(2γ )). Similarly to the case of output noise, it is
natural to define the noise strengthβ−1 := γ .

The origin of this noise can be that the input pattern itself is subjected to corruption by
noise or that there is weight noise in the couplings of the teacher.
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The flip probabilitypf (γ ) depends here on the architecture, namely it is

pf (γ ) = ε
(√
(1+ γ )−1

)
(29)

with the generalization errorε(r) already known from equation (25).
The probabilityφ, to answer on{hk} with σ , is

φ(σ, {hk}) = Tr
{σk}
1σ({σk})

K∏
k=1

H(−σkhk
√
β) (30)

whereH(x) := ∫∞
x

du exp(−u2/2)/
√

2π .
Equation (29) can be seen as follows. The generalization errorε(r) defines the

probability that student and teacher machine, which have overlapr, give a different answer
on a question. The local fields at a nodek of the respective machines can be written
as ht = t , hs = t · r + v · √1− r2, with two independent, normally distributed random
variablest andv. The flip probability, for comparison, defines the probability that the local
field h0, by adding noise with average 0 and varianceγ , is changed toh1, whereh0 = t
andh1 = t + v√γ , such that the final answers differ. Thus, the problems are completely
analogous, with the exact correspondences

√
1− r2

r
=̂ √γ or r =̂

√
1

1+ γ . (31)

With (29), one can easily discuss the small-noise limit in this case, since forr → 1,
according to equation (33) in [1], one gets

ε(r)→ ncπ
−1
√

2(1− r) (32)

which follows, for example from equation (25) forr → 1; thus one obtains

pf (γ → 0)→ nc · π−1√γ . (33)

Herenc is, in the limit considered, the only architecture-dependent value determining
the asymptoticsε(γ → 0). It characterizes the ‘border-regime’ of the Boolean function
B({σk}), namely by

nc = ( 1
2)
KNc (34)

whereNc is the number of all those possibleK · 2K bit-flips of the outputs of the hidden
units, which would lead to a change in the final output, see equation (35) in [1].

3. Teacher and student machine have identical noise levels

In the following we assume at firstφs ≡ φt , which means that the student machine uses
the known noise level of the teacher machine. This assumption, which impliesr = q, is
natural, since in this way overfitting will be avoided; moreover, as we will see later, it is
not too far from the optimal choice.

3.1. Free energy

After the preparations in the last section we can calculate the free energy for both noise
types. One gets from equations (19) and (20)

F = extr(q)

{
1

2
ln(1− q)+ q

2
− α ·W(q)

}
(35)
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where for the case of output noise

W(q) = −
∫ ∏

k

Dtk
∑
σ

1

1+ exp(−β) Tr
{σk}
1̃σ ({σk})

×
∏
k

H(σkγ tk) ln[ Tr
{σk}
1̃σ ({σk})

∏
k

H(σkγ tk)] (36)

with

1̃σ ({σk}) := 1σ({σk})+ exp(−β)1−σ ({σk}) (37)

and for input noise

W(q) = −
∫ ∏

k

Dtk
∑
σ

Tr
{σk}
1σ({σk})

∏
k

H(σkγ̄ tk) ln

[
Tr
{σk}
1σ({σk})

∏
k

H(σkγ̄ tk)

]
(38)

with

γ̄ =
√

q

1− q + (1/β) . (39)

These formulae will be generalized below for the cases of different noise levels of the
student and teacher machine, and for 1-step replica symmetry breaking (RSB1).

3.2. Identical noise levels: results for the case of output noise

3.2.1. Small training set:q → 0. The limit of a ‘small’ training set is best characterized
by the corresponding limitq → 0; in some cases this impliesα → 0, but sometimes the
corresponding limitingα can have a finite values as well (see below). The opposite limit
q → 1, which impliesα→∞, will be considered in section 3.2.2.

For q → 0 a redefinition of thecorrelation momentsaσm of equation (47) in [1] suffices
to capture the influence of the noise considered. With

aσm = ( 1
2)
K Tr
{σk}
1σ({σk})

m∏
i=1

σi (40)

one defines

bσm := aσm + e−βa−σm
1+ e−β

=


aσm tanh

(
β

2

)
for m > 1

aσ0 tanh

(
β

2

)
+ e−β

1+ e−β
for m = 0.

(41)

Therefore, thebσm fulfil the same algebraic relations, equation (51) in [1], as theaσm, namely

bσm = −b−σm and bσ0 + b−σ0 = 1. (42)

In particular, the so-calledorder-indexn, see below, is unchanged;n is defined by

bσn 6= 0 bσm = 0 for 16 m < n. (43)

Moreover, forW(q) one gets to lowest order inq

W(q) = −b1
0 ln b1

0 − b−1
0 ln b−1

0 − ln(1+ e−β)− q
n

2

(
2

π

)2(
K

n

)
(b1
n)

2

b1
0b
−1
0

+ · · ·

=: w0− qnw1+ · · · (44)

which agrees completely with equation (54) in [1] apart from the replacement ofaσm by bσm
and by the non-essential additional term ln(1+ e−β). So the results forq(α) in [1] can be



8550 B Schottky and U Krey

simply generalized by these replacements. Only with the generalization errorε(α) we have
to keep in mind that after training the noise is switched off, such that forε(α) theaσm must
be kept.

In view of the order-indexn, we thus can state as in [1] that:
• for n = 1, for example for the committee machine, the overlapq(α) increases for

α � 1 proportional toα, i.e. there is generalization right from the beginning, and one
obtains

q(α)→ 2α
K

π

(b1
1)

2

b1
0b
−1
0

. (45)

This happens for six of the nine cases withK = 4 hidden units given in figure 1 of [1].
• For n = 2, phase transitions of second order or of first order (or both) are possible, as

discussed in detail in section 7.2 of [1]. Generally, forn = 2 the network is purely guessing,
i.e. the error probability is12, as long asα is between 0 and the first critical value, whereas
an increase ofα beyond this critical value leads to a continous (resp. discontinous) increase
of the generalization ability in the case of a second-order (resp. first-order) transition. These
transitions withq(α) ≡ 0 for α < αc are called by us ‘Aha-effect transitions’. As just stated,
they appear only forn > 2, whereas forn = 1 only so-called ‘interim transitions’ (if at all)
can occur: at an ‘interim transition’q(α) is finite already belowαc.

If for n = 2 the second-order transition is not preceded by a first-order one, the critical
loading is

ᾱc = π2(b1
0b
−1
0 )

4K(K − 1)(b1
2)

2
. (46)

The casen = 2 occurs twice in figure 1 of [1].
• Forn > 3, as in the noise-free case, one always gets a first-order transition at a critical

αc > 0. Nevertheless thisαc has to be obtained numerically since the behaviour around a
q = qc with qc > 0 is relevant.

This case happens for example for the parity machine withK > 3, which hasn = K.
Thus, as long as there is no transition of first order, the behaviour can be described

analytically by looking at how the noise strengthβ−1 changes the correlation momentsbσm.
Some of the following statements are based on this fact; they are not exact as far as the
locations of first-order transitions are concerned, but we do not always state this limitation
explicitly.

If one considers only machines, which have the same probability for the two possible
outputsσ = ±1, these results can be simply condensed into a rescaling

α→ αeff := α · tanh2

(
β

2

)
≡ α · (1− 2pf )

2 (47)

wherepf is the flip probability defined in equation (27). This can be intuitively understood
as follows.
• p · (1− 2pf ) is the ‘uncorrupted fraction’ of the training set.
• The results are affected by noise from both the teacher and the student machine, which

explains the power of 2 in equation (47).

3.2.2. Identical noise levels; output noise; large training set:q → 1. In this limit, the
teacher network is approximated with arbitrary accuracy, for every noise strengthβ−1. That
this is possible, is not at all self-evident: the training set contains mistakes since the teacher
makes errors, the student learns this set making errors as well, but despite these facts the
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teacher machine is approximated perfectly. As we will see below, a bad training strategy
could empede generalization; so the fact that the student accepts the noise level of the
teacher, as assumed at present, is already a good strategy, although it is not yet optimal, as
we will see later.

From equation (36) one obtains forq → 1 the information gain

W(q)→ pf [ln(1− pf )− lnpf ] + ncw1(β)
√

1− q (48)

with

w1(β) = −
√

2

π

∫ ∞
0

du

{
1− e−β

1+ e−β
H(u) ln

[
H(u)+ e−βH(−u)
H(−u)+ e−βH(u)

]
+ e−β

1+ e−β
ln[eβH(u)+H(−u)] + 1

1+ e−β
ln[e−βH(u)+H(−u)]

}
. (49)

Determiningq(α) from W(q) and inserting the result again into equation (32), one obtains

ε(α)→
√

2

w1(β)πα
. (50)

So again, as in the deterministic case, one has an 1/α-asymptotics, and the prefactor does
not depend on the Boolean functionB({σk}), but only on the noise levelβ. Therefore again,
one is led to a rescaling

α→ αeff := r(β) · α ≡ w1(β)

w1(∞) · α ≡
w1(β)

0.720 647
· α. (51)

In figure 2, the scaling parameterr(β) ≡ w1(β)/0.720 647, which applies to the regime
q → 1, and the ‘intuitive’ scaling parameterrit (β) := [1− 2pf (β)]2, which applies to the
limit q → 0, are presented as a function of the ‘flip parameter’ 2pf , which corresponds to
the ‘corrupted fraction of the training set’. Obviouslyr(β) is < rit (β), which means that

Figure 2. The scaling factorr(β) of equation (51), which applies to the caseq → 1 of high
loading, and the ‘intuitive scaling factor’r it = (1− 2pf )2, which applies to the limitq → 0,
are presented as a function of the ‘corrupted fraction’ 2pf = 2e−β/(1+ e−β) of the training set
with respect to the output.β := βs = βt = 1/Ts = 1/Tt characterizes the output noise levels
of the student and the teacher machine.
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for large loading the effect of noise is stronger than for low loading. But the difference is
not large, so that the ‘intuitive reduction factor’rit (β) will always give a good estimate of
the effect. But it should be noted that in the limitq → 1 already a slight corruption of
the training set leads to a significant reduction of the generalization ability because of the
infinite slope ofr(2pf ) in the limit pf → 0.

3.2.3. Output noise: Data collapsing in the large-noise limit.Strong noise is described by
β → 0. Calculating the behaviour in this limit for both,q → 0 andq → 1, one sees that
q(α, β) is∝ β2α. We have looked for (approximate) data-collapsing in the whole parameter
region 0.2 < β < 1, by plotting the curvesq(α, β) not only as a function ofα, with β
as curve parameter, but using, instead, also the productβ2α as a scaling variable. The
results are compared in figure 3 and show that with the variableβ2α, for β 6 1, a good,
although still approximate, data-collapsing is obtained in the whole region 0< αβ2 < ∞.
This data-collapsing becomes asymptotically exact in the above-mentioned limitsq → 0
andq → 1.

3.3. Identical noise levels: Results for the case of input noise

3.3.1. Small training set:q → 0. Again we consider at first the limitq → 0. In this case
one gets from equation (39)

γ̄ →
√
q · 1

1+ γ =:
√
q · ζ (52)

and for the free energy

− F → extr(q)

{
−q

2

4
− α · (w0− qnζ nw1)

}
(53)

wherew0 andw1 are defined as

w0 = −a1
0 ln a1

0 − a−1
0 ln a−1

0 w1 = 1

2

(
2

π

)n (
K

n

)
(a1
n)

2

a1
0a
−1
0

. (54)

Again, the order-indexn, and thus thequalitative behaviour, remains unchanged by the
noise. In view of the three cases ofn, we now have the following.
• For n = 1, the limit q(α→ 0) is given by

q(α)→ 2αζ
K

π

(a1
1)

2

a1
0a
−1
0

. (55)

Sinceζ < 1, the noise diminishes the overlap.
• For n = 2, the critical valueᾱc of the second-order phase transition (if it is not

preceded by a first-order one, see above) shifts to a higher value:

ᾱc(ζ ) = 1

ζ 2
ᾱc(0). (56)

• For n > 3, there is again a first-order phase transition, but the resulting critical
loading must be determined numerically, since the behaviour around aq = qc with qc > 0
is relevant.

Taking all three cases together, we find a rescaling, which also applies forn > 3, namely

α→ αeff = ζ n · α. (57)

We recall again the caution which has to be taken as far as first-order transitions are
concerned.
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Figure 3. Data collapsing for output noise: On the left-hand side, the overlapq(α) of the
couplings of the student and teacher machines is presented as a function of the loadingα = p/N ,
wherep is the number of examples of the training set, for four different values of the common
output noise levelT = 1/β of the student and the teacher (T = 0; 0.5; 1.0 and 1.5), whereas
on the right-hand side the results (forT = 1.0, 1.5, 2.0 and 5.0) are presented as a function of
αβ2. Note that for the parity machine withK = 2 and 3, respectively, one has an ‘Aha-effect’
phase-transition of second order (n = 2) and first order (n = 3) respectively, whereas for the
committee machine and the K4mcode2 machine, where the order indexn = 1, the machine
generalizes right from the beginning. For the committee machine, there is no phase transition
at all, whereas for the K4mcode2 machine, there is an ‘interim transition’ aroundαβ2 ≈ 16, a
situation, which is also compatible withn = 1, see [1].
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3.3.2. Identical noise levels; input noise; large training sets:q → 1. Considering the limit
q → 1, i.e.α →∞, one sees from equation (39) that nowγ̄ does not converge to∞, in
contrast to the behaviourwithout noise, or withoutput noise. Instead

γ̄ →
√
β[1− 1

2(1+ β)(1− q)]. (58)

Expanding equation (36) for 1− q → 0, one obtains

W(q)→ w0(β)+ (1− q) · w1(β). (59)

If one determinesq(α) from equation (23) and inserts it into equation (32), one obtains

ε(α)→ nc
1

π
√
w1(β)α

(60)

with

w1(β) = (1+ β)√β
2
√

2π

∫ ∏
k

Dtk
∑
σ=±1

Tr
{σk}
1σ({σk})

[∑
m

σmtme−βt
2
m/2

∏
k( 6=m)

H(σktk
√
β)

]
× ln

[
Tr
{σk}

∏
k(6=m)

H(σktk
√
β)

]
. (61)

From equation (60) one can see thatinput noise, in contrast to output noise, leads to a drastic
deterioration of the generalization ability, namely from an asymptotics asε(α) → c/α to
the slower decreaseε(α) → c̃/

√
α. Additionally we find that the prefactor̃c of this

behaviour—in contrast toc—depends on the architecture. In figure 4, for theK = 2- and
K = 3-parity machines and for theK = 3-committee, we present thisprefactor c̃ of the
asymptotic behaviourε(α → ∞) → c̃/

√
α as a function: (i) ofγ and (ii) of the ‘flip

probability’ pf = ncπ−1√γ . Interestingly, with the last-mentioned representation, the data
almost collapse to a single curve, although the results look quite different when presented
againstγ .

For the simple perceptron a corresponding result is given in [3].

3.3.3. Input noise: Data collapsing in the large-noise limit.For the case of input noise it
can further be shown that in the high-temperature limitβ → 0 and forα→∞

ε(α)→ nc

√
2

π

1√
V0βnα

(62)

with

V0 =
(

2

π

)n ∑
σ=±1

(aσn )
n

aσ0

(
K

n

)
. (63)

The corresponding behaviour forα → 0 can be seen from (57). Summarized, data
collapsing in the limitβ → 0 both forq → 0 andq → 1, but withn-dependent rescaling
α→ αeff = βnα.

In figure 5, for two examples, we check whether for the input noise temperatures
γ = 1/β = 1.0, 2.0, . . . ,5.0 one gets data collapsing. Thereby we useζ = 1/(1+ γ )
rather thanβ for rescaling which is a better choice ifβ is not close to 0. We compare
results forq plotted as a function ofα with results, whereq is plotted againstα/ζ 2 for the
K = 2-parity machine, resp. againstα/ζ for the K4 mcode2 machine.
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Figure 4. For theK = 2 andK = 3 parity machines, and for theK = 3 committee, the
prefactorc̃ of the c̃/

√
α -asymptotics of the error-probabilityε(α) is plotted againstγ andpf ,

respectively, for the case of input noise;γ ≡ β−1 is the common noise level of teacher and
student machines, andpf is defined in (33) and (34). In the lower plot, the curves for theK = 3
parity and committee machines overlap to the accuracy of the drawing.

3.4. Identical noise levels: The different impact of output and input noise

As already seen there are some significant differences of the impact caused by output
and input noise, respectively. Let us first have a closer look at the influence of a small
disturbance by noise.

3.4.1. Small-noise limit:β →∞. To compare the impacts of noise in this limit we have
to distinguish between the cases of small and large reduced sizeα = p/N of the training
set, respectively. For smallα the effect of input noise is forγ → 0 (or β →∞) according
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Figure 5. Data collapsing for input noise. For theK = 2 parity machine and for the K4mcode2
machine, with common noise temperaturesγ = 1/β of the teacher and student machine, ranging
from γ = 0 via 1, 1.5, 2 to 5, the overlapq between teacher and student couplings is plotted
againstα andα/ζn, respectively, wheren is the order-index of the system andζ := (1+ γ )−1.
For the parity machine, the data collapsing is almost perfect, whereas for the second machine it
applies only to the limits of small and high values ofα/ζ . Note that here, in contrast to figure 3,
the ‘interim transition’ of the second machine is destroyed by the input noise.

to equation (57)

αeff = ζ n · α = (1+ γ )−n/2 · α→
(

1− n
2
γ
)
α. (64)

With the flip ratepf given by equation (33) in this limit we have forinput noise

αeff = α ·
[

1− n
2

(
πpf

nc

)2
]
. (65)

The training set is therefore only reduced by a small amount∝ p2
f . In contrast, foroutput

noise this amount is∝ p1
f . For machines with equal probability for final outputσ = ±1

this can directly be seen from equation (47). This means that a small amount of input noise
does hardly matter for the case ofα → 0, in contrast to a small amount of output noise,
which—so to say—instantly deteriorates the behaviour.

On the other hand, forα → ∞ a small amount of input noise induces aqualitative
change in the asymptotics, since then the behaviour is shifted from the 1/α-asymptotics
to the slower 1/

√
α-decrease, ifα is beyond the corresponding (non-universal) crossover

value. In contrast, for output noise the 1/α-behaviour is qualitatively unchanged, only the
prefactor is increased.
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3.4.2. Input noise: Disappearance of phase transitions.A further difference concerns the
phase transition of the K4mcode2 machine: Here theintermediatephase transition as
existent in the deterministic case (see [1]) disappears for the case of input noise. This
does not happen for output noise. Whether other intermediate phase transitions are affected
similarly has to be checked.

Nevertheless all other types of phase transitions (see section 3.2.1 above or [1]) persist
for both casesof noise, although the shift of the critical parameters depends of course both
on the strength and type of the noise.

4. Optimization of the noise level of the student machine

In this section we focus exclusively onoutput noise, but now different noise levels for
student and teacher networks are allowed. The following two sections (4.1 and 4.2) give
the theory for the general multilayer case. The formulae are evaluated mainly for the
simple perceptron; for the general case just asymptotic results within the replica-symmetric
formalism are given.

4.1. Different noise levels; output noise: Replica-symmetric formalism

In the replica-symmetric formalism of the preceding section, one has two different noise
strengthsβt and βs of the teacher resp. student machine, and additionally nowq 6= r.
Therefore, instead of equations (35) and (36) one has

F = extr(q,r)

{
1

2
ln(1− q)+ q − r2

2(1− q) − α ·W(q, r)
}

(66)

where for the present case of output noise it is

W(q, r) = −
∫ ∏

k

Dtk
∑
σ

1

1+ exp(−βt ) Tr
{σk}
1̃σ ({σk})

∏
k

H(σkγr tk)

× ln

[
Tr
{σk}
1̃σ ({σk})

∏
k

H(σkγ tk)

]
(67)

with

γ =
√

q

1− q and γr = r√
q − r2

(68)

and with 1̃ defined by equation (37) withβ ≡ βt and βs , respectively. The functions
q(α) and r(α) follow again from the saddle-point conditions (23). An additional quantity
of interest is therelative training-error εtr := Etr/p = −α−1∂F/∂βs ; εtr is thus the
fraction of the training set, which is misclassified by the student machine. A straightforward
calculation, see [8], yields

εtr = 1

1+ e−βt

∫ K∏
k=1

Dtk
∑
σ=±1

Tr
{σk}
1̃σ ({σk})

∏
k H(σkγr tk)

Tr
{σk}
1̃σ ({σk})

∏
k H(σkγ tk)

×e−βs Tr
{σk}
1−σ ({σk})

∏
k

H(σkγ tk). (69)
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4.2. Different noise levels; output noise: RSB

Within the usual RSB1 scheme, see [9], one gets withqa,b ≡ 1 for a = b, qa,b ≡ q1, if a
andb are different, but belong to the same subgroup ofm of the n replicas, andqa,b ≡ q0

else, and with1q := q1− q0:

F = extr(r,q0,q1,m)

{
q0− r2

2(1− q1+m1q) +
1

2
ln(1− q1)

+ 1

2m
ln

(
1+ m1q

1− q1

)
− α

m
·W(r, q0, q1, m)

}
(70)

with

W(r, q0, q1, m) = −
∫ ∏

k

Dtk
∑
σ

1

1+ exp(−βt ) Tr
{σk}
1̃σ ({σk})

∏
k

H

(
σk

r√
q0− r2

tk

)

× ln

{∫ ∏
k

Dvk

(
Tr
{σk}
1̃σ ({σk})

∏
k

H

[
σk
tk
√
q0+ vk

√
1q√

1− q1

])m}
. (71)

4.3. Replica symmetry and RSB results for the simple perceptron

In the following we use the notation ‘perfect student’ or ‘perfect learning’ to describe the
fact that the given training setT S is learntwithout any error, so ‘T S-perfect’ would be
a more precise terminology. ‘Non-perfect learning’ (or better ‘T S-nonperfect learning’)
means that errors with respect toT S are made. We stress here thatT S may already be
corrupted with respect to the originalrule. (We also mention that ‘perfect learning’ is
sometimes also used to describe coinciding architecture of student and teacher which is the
case here anyway. To keep our special definition in mind, we always use primes in the
terminology ‘perfect’.)

4.3.1. Replica symmetry results: ‘Non-perfect’ teacher, but ‘perfect’ student.In the
following, for simple perceptrons (K = 1) we consider at first the case of a ‘perfect’
student machine (i.e. necessarilyβs = ∞) but allow for a ‘non-perfect’ teacher (βt <∞),
which means that the training set itself is partially corrupted, since the answers given by
the teacher on the questionsξµ (µ = 1, . . . , p = α N ) do not always follow the rule, but
are partially random.

Of course, ‘perfect learning’ of thecorrupted training set is then possible only up to
a specificαc depending on the noise; for example if forall input patternsξµ the outputs,
prescribed byT S, would be randomized with respect to the original rule, then one would
get the famous resultαc = 2 of Gardner, [7].

In figure 6(a), both for the case of output noise and input noise,αc is presented as a
function of the non-corrupted fraction(1− 2pf ) of the training set, withpf taken from
equations (27) and (29), respectively. Additionally, in figure 6(b), for output noise with
Tt = 1, the curver(α) for maximal stability learning(MSL) is shown (full curve) and
compared with the corresponding result for Gibbs learning (broken curve). For the MSL
case, the student is not a random member of the version space but has those couplings, which
lead tomaximal stabilityof the classification of the whole training set of patterns mapped
to +1 and−1, respectively. This specific member can be obtained by the well-known
AdaTron algorithm, [10].

Two overfitting effects can be seen: considering Gibbs learning, the overlapdecreases
at the end of the curve. Compared with MSL, Gibbs learning is worse for smallα (which
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Figure 6. (a) Storage capacityαc of a deterministic student perceptron (i.e.K = 1, Ts = 0) in
the presence of a noisy training set (Tt 6= 0): a fractionpf of the binary answers of the teacher
perceptron are misclassified. Both, input and output noise are considered. (b) Overlapr of a
deterministic student perceptron (i.e.K = 1, Ts = 0) with the teacher vector in the presence
of a noisy training set with output noise strengthTt = 1, plotted as a function of the reduced
size α := p/N of the training set. The full curve is for maximal stability learning, i.e. the
AdaTron algorithm, [10], while the broken curve is for Gibbs learning. The two overfitting
effects appearing here are explained in the text.

is expected) but becomes better forα → αc, although MSL chooses a specific vector for
the student which is supposed to perform the classification task very well.

These are hints that training with noise might avoid overfitting effects of the student
and therefore could lead to an enhanced performance.

4.3.2. Replica symmetry results: ‘Non-perfect’ teacher and ‘non-perfect’ student.Here we
consider again the perceptron (K = 1) and assume a given output noise levelβt = 1 of the
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teacher machine.
In figure 7 we present the dependence of various quantities on the noise strength

Ts := 1/βs of the student machine. These are as follows.
• The overlapr(Ts) of the two coupling sets. This quantity determines the generalization

ability of the Gibbs training algorithm.
• The typical overlapq(Ts) of two student perceptrons.
• The overlaprcp of the so-called ‘central-point network’ with the teacher machine: The

coupling vector of the ‘central-point network’ is obtained as a (weighted) average of the
coupling vectors of all student perceptrons forming the Gibbs ensemble. Analogously to
equations (75) and (76) in [1] one can show thatrcp(Ts) = r(Ts)/

√
q(Ts). The corresponding

generalization error is obtained by pluggingrcp into (25).
Moreover, for βs = βt the corresponding network turns out to have the same

generalization ability as an exploitation of the version space performed by the Bayes
algorithm, see [1].

From the results of figure 7, the following points should be noted.
(1) For all values ofα, r(Ts) and q(Ts) cross atTs = Tt . In fact, for this case the

teacher has the same properties as a typical student of the Gibbs ensemble.
(2) The curvesrcp(Ts) have a flat maximum atTs = Tt . This is also obvious: since in

this case the central-point network reaches the generalization ability of the Bayes algorithm,
which is maximal, according to information theory. Nevertheless, since the curvercp(Ts) is
very flat around the maximum, the detailed value,Ts = Tt , is non-essential.

(3) In contrast, the overlapr(Ts) for Gibbsian learning shows a pronounced maximum
for a finite noise levelTs only for α = 2 andα = 5, but not forα = 1. Obviously for
Gibbs learning, training with output noise (i.e.Ts > 0) is only advantageous beyond a finite
α, which of course depends onTt . For a similar model this was reported in [11].

Figure 8 presents this optimal value of the student noise levelTs as a function ofα
for fixed Tt = 1. Beyondα = α̃c (≈ 0.6 in figure 8) training with noise leads to better
generalization. We determined the value ofα̃c only numerically from the appearance of a
maximum. For largeα, the optimalTs for Tt = 1 converges to 0.605 24.

In figure 9, the training errorεtr is presented as a function ofTs for Tt = 1 and for
differentα-values, ranging fromα = 0 (lowest curve for smallTs) to α→∞. ForTs →∞
all curves converge toεtr = 0.5, as they should. Forα → 0 the result is only determined
by βs , and forα→∞ only by βt , namely

εtr (Ts)|α→0 = e−βs

1+ e−βs
εtr (Ts)|α→∞ = e−βt

1+ e−βt
. (72)

4.3.3. Different noise levels; simple perceptron: RSB results.The non-monotoneous
behaviour ofr(Ts) for α = 2 in figure 7 is not an artefact of replica symmetry (RS):
for α = 2 we determined an optimalTs > 0, and since the problem islearnable for this α
and everyTt , RS is correct.

However, whenα becomes> αc (which is always larger than 2 according to figure 6(a)),
one expects RSB. In figure 10, forα = 5 andTt = 1, the order parametersr(α) andq(α) are
presented, as obtained in RS (heavy curve) and RSB1 theories. Obviously, RS is correct
around the optimal student temperatureTs ≈ 0.35 and beyond, but for smaller values
(Ts . 0.27) RS is broken. In fact, in the RS approach, a paper of Györgyi, [11], predicts
(for a similar model) a rather large and useful effect of ‘training with noise’ already for the
case of smallTs . However, due to RSB corrections, see figure 11, the benefit of noise is
weaker than expected in the RS calculation of [11] since for the case of small noise of the
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Figure 7. For the perceptron (K = 1)
and the caseTt = 1 of the teacher’s
output noise level and the three cases of
α = 1,= 2, and= 5, the overlapsq andr
for Gibbs learning, andrcp for the central-
point network, i.e. Bayesian learning, as
explained in the text, are plotted over
the student machine’s output noise level
Ts . Note that fromr an optimal noise
temperatureTs = Topt can be defined.
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Figure 8. Here the optimal student machine’s output noise temperatureTopt, as determined
in figure 7, is presented overα for Tt = 1 (Gibbs learning,K = 1). The dashed line is the
asymptotic limit forα→∞.

Figure 9. For the perceptron (K = 1) with Gibbs learning, for various values ofα and fixed
teacher machine’s output noise temperatureTt = 1, the training errorεtr of equation (69) is
plotted over the output noise temperatureTs of the student machine.

student machine the overlaprRSB calculated in RSB1 is higher than calculated with RS, and
the value obtained in RSB1 forα . 0.27 is almost as high as that obtained at the optimal
valueTs ≈ 0.35, where RS is correct. An extension of RSB, for example to RSB2 (see [9])
may even enhance the value ofr(Ts) calculated in RSB1.

Here we mention that Uezu, in a recent preprint, [17], has independently treated
problems studied in section 4.3, with largely overlapping results.
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Figure 10. For Gibbs learning withα = 5, Tt = 1 andK = 1 the order parametersrRS andq
(for RS), andrRSB, q0 andq1 (in RSB1) are presented over the student perceptron’s output noise
temperatureTs . For values ofTs which are slightly smaller than the optimal valueTs ≈ 0.35,
RS is broken and the overlaprRSB is somewhat enhanced with respect to the RS case, but still
smaller than the optimum.

Figure 11. For Tt = 1 andK = 1, the optimal overlapr(Ts = Topt(α);α) is presented. For
comparison, also the overlap obtained forTs = 0.1, where RS is broken, is plotted, both in RS
approximation and in RSB1, where the result is only slightly suboptimal.

4.3.4. Why RSB occurs: An intuitive explanation.As stated above, RSB can occur ifα
becomes> αc (which is always larger than 2 according to figure 6(a)). Nevertheless RS
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Figure 12. This figure suggests an analogy, making plausible that RS is broken for small
student machine’s noise level (left scenario), but isrestored beyond a critical value ofTs , for
fixed teacher machine’s noise levelTt (right scenario).

is restored if the student temperatureTs increases above a critical point as demonstrated in
the previous paragraph.

To understand this, let us consider the caseTs → 0, which means that only student
machines with minimal training error are allowed. The available phase space will then
separate into disjunct parts: to every disjunct part student machines belong, which
misclassify a certain (different) minimal set of patterns of the training examples. The student
machines ‘in between the disjunct components’ make more errors. IfTs is increased, they
also become ‘more and more allowed’ until finally the allowed region of phase space melts
together to a single component, i.e. RS is restored. This scenario is presented qualitatively
in figure 12.

4.4. Different noise levels; output noise: RS and RSB results for multilayer networks

Since the numerical effort increases drastically for multilayer networks we consider
exclusively output noise and restrict ourselves to give just asymptotic results for this case.
For Tt = 0.2, 0.5, 1.0 and 2.0 the ratioTs/Tt is varied.

4.4.1. Large training sets:q → 1. We ask, how the student temperatureTs should be
chosen in the case of large training sets. The aim is to obtain an optimal prefactor for
the asymptotic behaviour of the generalization error,ε(α)→ c0/α. This can be calculated
analytically for givenTt , results are presented in figure 13. There, for four different values
of Tt we present results for the ratioc0/c

opt
0 of the coefficientsc0 of the asymptotic behaviour

ε(α) → c0/α. Herecopt
0 refers to the optimal choice ofTs for given Tt . The results have

been plotted as a function ofTs/Tt . Again we find that the optimal choice isTs/Tt ≈ 0.6,
but with a ‘flat behaviour’. Note that these results do not depend on the architecture, in
contrast to corresponding results for input noise.

4.4.2. Small training sets:q → 0. The crucial question in this limit is, in which way the
above-mentioned phase-transitions shift when a noise strengthTs 6= Tt is used, in particular
whether there is an optimalT opt

s 6= Tt for which the ‘Aha-effect’ happens earlier, i.e. for
smallerα.

For theparity machinethis question can be immediately answered. There the choice
Ts = Tt means that the already-mentioned ‘central-point network’ with overlapr/

√
q

reaches the Bayes generalization ability, which is optimal, i.e.εBayes(q) = εGibbs(
√
q).

Therefore, for the parity machine the ‘Aha-effect’ phase transition cannot occur earlier than
calculated forTs = Tt .
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Figure 13. For a general Boolean functionB and the case of output noise, the ratio of the
prefactorsc0/c

opt
0 for the asymptotic behaviourε(α→∞)→ c0/α is plotted againstTs/Tt for

the values ofTt = 0.2, 0.5, 1.0 and 2.0. Note that the optimal valueTs ≈ 0.6Tt is more or less
universal, and the behaviour in the vicinity of this point is rather flat.

For other networks, a slight addition to the argument is in order, since now the
generalization ability of the ‘central-point network’ is smaller than that one obtained with the
Bayes prescription. But forTs = Tt the typical student is also a typical teacher, i.e. we have
an ensemble of student coupling vectors, which corresponds to thea posteriori probability
that a certain coupling vector is that of the teacher machine. The Bayesian generalization
error can be calculated from the expectation value ofq for this ensemble by means of (26).
This implies that the Bayes generalization ability becomes trivial (i.e. the error probability
is 1

2) below the criticalα calculated forTs = Tt (since the Bayes generalization is optimal,
a variation ofTs cannot lead to further improvement). So a transition to non-zeroq cannot
occur earlier for whateverTs one chooses, and thus for all networks considered the phase
transition cannot appear for smallerα.

5. Why is training with noise useful?

That training with noise can be useful, is already ‘folklore’, see e.g. [12, 13], and in the
present context it is also known that in this way one can avoid overfitting (see [14, 2]).
Here we want to go somewhat more into the details and look into the phase space structure.

5.1. Survey of the phase space of a small system

Let us first define the so called ‘genuine error’E0 of the student. This quantity counts the
number of patterns from the training set where the (deterministic) answer of the student
disagreeswith the original rule and not with the partially corrupted answer of the teacher
network.

Now we perform a simple survey of the phase space of a small perceptron withK = 1
andN = 10, with normalized randomly chosen coupling vectorwt with N components,
and with a given set ofp = 20 questionsξµ, i.e. we haveα = p/N = 2. By flipping
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Figure 14. Comparison of the overlapr(α = 2) of our theory forK = 1 as a function ofTs for
K = 1 andTt = 0.91 (broken curve, calculated as in figure 7) with results from a simulation
of the states of a small system as described in the text (full curve). In both cases there is an
optimal output noise strengthTs . For more details see the text.

five of the 20 answers given bywt , we have our teacher perceptron endowed with an
output noise level ofpf = 5

20 = 0.25 and with a training set consisting of the 20 pairs of
questions and the partially corrupted answers. Then a large number ofstudent vectorsws

are drawn randomly from a uniform prior over all normalized real vectors withN = 10,
where the random components are sampled from a Gaussian distribution with zero average
and variance 1/N . Finally, for eachws , we evaluate: (i) the errorEtr with respect to the
actual training set, i.e. the corrupted one; (ii) the errorE0 with respect to theuncorrupted
answers on the training patterns, and (iii) the actual overlapr with wt . The results are
condensed into a two-parameter table: for each combination of the values ofEtr andE0

the numberof vectors (yielding these errors) as well as the corresponding averaged overlap
r is stored.

This table can be used to calculate ther(Ts) curve for the specific values ofα = 2
andpf = 0.25. This is shown in figure 14 (full curve) and compared with the theoretical
result withα = 2 andTt = 0.91 (corresponding topf = 0.25) which has been evaluated
analogously to figure 7. We see that there is actually—despite the smallness of the simulated
system—a nice qualitative similarity (more would be unexpected) in the behaviour ofr(α)

as a function ofTs ; in particular we find that it is useful to increase the noise untilTs ≈ 0.4,
whereas for largerTs noise is more and more detrimental.

Looking more directly at the performance of this small system, we note the following
numbers from a typical realization of the survey through its phase space. In this survey the
combination (E0 = 5, Etr = 0) was realized 215 times. These 215 students made no error
with respect to the actual (i.e. corrupted) training set, and thus they madeE0 = 5 errors
with respect to the original rule. Possible values forEtr = 1 are then: (i)E0 = 4, i.e. one
of the five errors of the student with respect to the original rule has been corrected, or (ii)
E0 = 6, i.e. one additional error has been made. In the simulation we found that (i) occurred
in 1746 cases, whereas (ii) was less frequent, namely 1146 times, although there are many
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Figure 15. For a teacher output noise level ofTt = 1 andα = 2 the curves forr, ε0 andεtr are
shown forK = 1 as a function of the noise levelTs of the student machine. The increase inr
is related to a decrease ofε0 showing the error correcting behaviour of the non-perfect student.

more combinatorial possibilities for case (ii). The corresponding averaged overlaps are of
course increased for the caseE0 = 4 and decreased forE0 = 6. So obviously the system
is able to correct errors previously made with respect to the original rule, and to increase
the typical overlapr in this way.

5.2. The errorε0 with respect to the uncorrupt training set

This can as well be confirmed theoretically. Definingε0 = E0/p as the fraction of errors
of the student with respect to the original training set, one derives the following equation:

ε0 = 2

1+ e−βt

∫
Dt
H(γr t)H(−γ t)e−βs +H(−γr t)H(γ t)e−βt

H(γ t)+ e−βsH(−γ t) (73)

with γ and γr defined in (68). In figure 15,ε0 is plotted as a function ofTs for α = 2
and Tt = 1. So with increasingTs , ε0 decreases at first, which means that at first the
system mainly corrects the mistakes contained in the corrupted training set with respect to
the original rule. But after a minimum,ε0 increases again for largerTs and approaches the
‘training error’ εtr (i.e. with respect to the corrupted training set) forTs →∞.

The reason for this ability to produce the ‘right’ errors can be explained in terms of a
sort of energy–entropy competition.

Allowing a given student to make errors there are more possibilities to increase the
number of errors than to reduce this number; nevertheless, there are many more students
in the version space classifying the training set with a decreased error number than with an
increased one.
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5.3. Multifractal phase space analysis

A more thorough analysis of the phase space structure is possible with the recent ‘multifractal
technique’ of Monasson and co-workers [15, 16]. Extending this analysis to problems with
noise, the distribution of the phase space voluminaVτ weighted with the corresponding
degree of membership corresponding to a setτ = {σµ}|µ=1,...,p of answers on the training
questionsξµ is given by the quantity

g(m) = 1

mN

〈
ln
∑
τ

(e−βsEtr (τ )Vτ )m
〉
. (74)

Herem is the inverse of a formal temperature and controls, how strongVτ is weighted.
Formally (−g(m)) is a free energy derived from the partition function

Z =
∑
τ

e−mEτ (75)

with the energyEτ := − ln[e−βsEtr (τ )Vτ ]. Then the quantities

− k(m) := −∂(mg(m))
∂m

and c(k) := ∂g(m)

∂(1/m)
(76)

correspond formally to internal energies and entropies with respect toTm := 1/m, and
measure, how the phase-space volumeVτ and the corresponding number of realizations
scale in the thermodynamic limit, namely as eNk and eNc(k), respectively. Herek < 0, but
c(k) > 0. These quantities can be calculated by a formalism, which resembles a RSB1
calculation, see [15, 16, 8]. The dominating behaviour, which is already calculated in the
usual RS calculation,m = 1, is noted by the asterisks in figure 16 and follows from the
identity d[c(k) + k]/dk = 0. In this figure 16, the results are for the simple perceptron.
The overlapr(k) is presented as a function of−k, for α = 5 and the teacher output noise
temperatureTt = 1, for different values ofTs , namelyTs = 1.0, 0.8, 0.6, 0.4, 0.3, 0.2,
0.16, 0.14, 0.12, and 0.1, from the left. In this way, a differentiated picture of changes in
the phase-space distribution induced by changes of the noise temperatureTs can be given.
So there are two effects: with increasing temperature, regions with high student–teacher
overlap become more and more active. At the same time, the volume determining the
typical (dominant) overlap, i.e. the position of the asterisk, moves towards the maximum
of these overlap curves. After having reached the optimal temperature, the curve decreases
again, and regions with high training error and small overlap begin to dominate the phase
space.

5.4. Why noise is useful: An intuitive picture

Summarizing the calculation and results of this section one can give an intuitive picture for
the observed behaviour: In figure 16 we plot a scenario corresponding to a slice through a
lake with a flat bank on the left, but a steep shore on the right.

To get the basic point let us think of the simple perceptron in a regime where RS is
preserved even forTs = 0, thus the (corrupted) training set is learnable. The deepest point
in the lake corresponds to the error-free solution(s) with respect to this (corrupted) training
set.

An increase of the student temperatureTs corresponds to an increase of the water level
starting from this deepest point. Of course in the case of figure 16 the direction of the flat
bank is favoured compared with the steep shore, so the centre-of-mass shifts to the left for
increasing water level.
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Figure 16. Phase-space analysis according to the formalism of [15, 16] of a perceptron (i.e.
K = 1) with Tt = 1 andα = 5, i.e. the overlapr(k) has been presented as a function of the
typical volume measure (−k) as explained in the text. The student output noise temperatures
of the different curves correspond toTs =1.0, 0.8, 0.6, 0.4, 0.3, 0.2, 0.16, 0.14, 0.12 and 0.1,
from the left. The asterisk denotes the ‘typical result’ as obtained according to the usual RS
calculation.

Figure 17. This sketch shall make plausible, why training with noise can lead to an enhancement
of the overlap of the couplings of the student and the teacher machine’s couplings. For details
see the text.

This can be transferred to our model as follows.
• The direction of the flat bank (on the left) corresponds to noise-induced flips in the

answers whichcorrect wrong answersin the corrupt training set. The corresponding phase
space of vectors is large (1746 students with a genuine error level, i.e. with respect to the
original rule, reduced fromE0 = 5 to E0 = 4 in the example of section 5.1).
• On the other hand, the steep shore on the right means that the phase space

corresponding to detrimental changes of answers, which are correct in the training set, should
be significantly smaller (1146 students with an enhanced error level,E0 = 5→ E0 = 6).

So, corresponding to the ‘water dynamics’ scenario of figure 17, if the noise level is
enhanced, the additional accessible phase space is dominantly situated on the left. The
corresponding flat bank corresponds to just those solutions which correct errors instead of
adding new ones. Since the former are also those having (intuitively) an increased overlap
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with the teacher, ‘training with noise’ can be useful.
But what happens ifTs is increased too much, corresponding to flooding the lake?

First of all, we have to notice that the ‘optimal’ solution is placed somewhere in the
neighbourhood of the deepest point towards the flat shore. So flooding means that many
solutions far from the optimum are included, and the performance of a random choice
(corresponding to the Gibbs algorithm) should decrease. Nevertheless, looking at thecentre
of mass(corresponding to the Bayes algorithm), this quantity should be less sensitive to the
deluge, especially if the shapes of the shores become more similar in the remote areas of
the lake. So the Bayes algorithm should be less affected by a too high student temperature.
This lower sensitivity of the Bayes algorithm to the negative effect of a very high noise, in
contrast to the case of Gibbsian learning, can be nicely observed in figure 7.

6. Conclusions

We have studied the influence of input or output noise on the existence ofphase transitions
in the generalization behaviour of two-layer neural networks with non-overlapping receptive
fields. Generally we find for Gibbs learning as a function of the reduced sizeα := p/N
of the training set that the ‘Aha-effect’ phase transitions, where the system performs a
simple guess forα < αc and only generalizes ifα exceeds a critical value,persist in the
presence of noise. However, the critical parameters scale with the strength of the noise,
see for example figures 3 and 4. In particular, the order-indexn of the system, which
characterizes the behaviour at the transition, is unchanged: Forn = 1 (e.g. the committee
machine) the system starts to generalize already with arbitrarily smallα, while for n = 2
(e.g. theK = 2-parity machine) there is a continuous ‘Aha-effect’ transition (i.e. a second-
order phase transition), whereas forn > 3 (e.g. the parity machine withK > 3, which
hasn = K) a discontinuous ‘Aha-effect’ transition happens. Only the so-called ‘interim
phase transitions’, which appear in some cases forn = 1, for example the K4mcode2
machine, get lost by input noise, but not by output noise. (At the ‘interim transitions’ only
the strength of the generalization ability is enhanced from an already finite value forα < αc
to a larger value aboveαc.) Therefore, the ‘Aha-effect’ transitions are—so to say—more
generic than ‘interim transitions’.

Concentrating on the simple perceptron and output noise we also studied the problem
of anoptimal choicefor the noise levelTs of the student machine, given that of the teacher.
Looking at Gibbsian learningthere is a criticalα̃c above which a student trained with a
finite noise level has a better performance than a ‘perfect student’, i.e. a student who has
learnt the (partially corrupted) training set without errors. Forα → ∞ this optimal noise
level approaches≈ 0.6Tt (this is true for all network types considered here). The case
is slightly different forBayesian learning. Here the choiceTs = Tt is optimal for all α.
Nevertheless the learning curve is quite flat around this optimal choice, so small deviations
from the optimal noise have no large impact.

In view of RSB for the problem considered we found that for givenTt RS is typically
conserved down to the optimal values ofTs and somewhat below. But ifα is larger than
a critical noise-dependent value, RSB occurs for low noise temperatures. Due to this fact,
the suboptimal overlapr calculated in a RS theory for this region of smallTs is corrected
to a higher value, which in a RSB1 calculation almost reaches the optimal number. This
means that the ‘gain’ achieved by training with noise is less pronounced than predicted in
for example the RS theory of [11]. RSB of higher order may lead to additional (slight)
corrections in the region, where RS is broken. Nevertheless the effect of an optimal finite
student noise rateTs in some cases was shown to be not artificial since the values ofα
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resp.Ts , below resp. above which replica symmetry remains preserved, and also the optimal
value ofTs in this RS region, as calculated in this paper, will remain unchanged.

Finally we took a quick look on mechanisms allowing improved learning for imperfect
students. We showed that error correction is possible, due to a sort of energy–entropy
competition, leading to an increased overlap compared with the minimal-error solutions.
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